If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+5x-1=
We move all terms to the left:
9x^2+5x-1-()=0
We add all the numbers together, and all the variables
9x^2+5x=0
a = 9; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·9·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*9}=\frac{-10}{18} =-5/9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*9}=\frac{0}{18} =0 $
| 48-4x=24-8x | | 13n+1n=1 | | 16=3x-5;x=7 | | 3(2x+5)=-x+7 | | -6(-5x+3)+2=-76 | | 4=9x;x=36 | | 12x-15=11x+2 | | 54=6-8x | | 54=8-5x+14+3x | | -6p—5p+-17=3 | | 14/5=x | | C=3.75+12.25n | | -6x—5x+-17=3 | | (3x–7)4=1296 | | 4x²+20x-96=0 | | 54n+9=21 | | 18-2m÷5=2 | | -7-9x=-16x | | 4x²+20x=96 | | -19x=17-20x | | x^2+8x+15=(x+3) | | 4163.25=3900(1+0.75r) | | 19n=-12+15n | | 3x-5+7x+4=6x+5+4x-6 | | 4163.25=3900.00(1+0.75r) | | 3900.00=3900.00(1+0.75r) | | 3x+3=9x-10 | | 107d=1,334 | | x^2-9x+20=x-5 | | 14+16k=15k | | -6-8c=36+16 | | 6(w+3)-8w=28 |